刘泽金,唐勇,李斌,唐勇,张飞,付兵
Vol. 2, Issue 4, Pages: 14-16(2025)
Doi:https://doi.org/10.62639/sspis04.20250204
ISSN:3006-0737
EISSN:3006-4309
16
Downloads:0
电力电缆作为电网重要的输电和配电载体,其运行状态直接关系到电力系统供电的可靠性和安全性。然而,电力电缆一旦发生故障,若无法及时准确地判断故障类型与位置,就会导致检修延误,从而影响正常生产和生活。针对目前电力电缆故障诊断中信息特征提取不充分、故障识别率不高以及诊断实时性不足等问题,本文提出一种基于小波包和布谷鸟搜索优化BP(CS-BP)神经网络的电力电缆故障诊断方法。通过在PSCAD/EMTDC环境中搭建电力电缆故障仿真模型,采集到多种故障工况下的电压暂态信号,并利用小波包分解与信息熵提取故障特征向量,再将特征向量输入至CS-BP神经网络进行故障识别分类,从而实现对常见电力电缆故障类型的诊断。实验结果表明,该方法在故障识别精度和收敛速度方面均优于同参数下的BP神经网络和PSO-BP神经网络,为电力电缆故障在线监测和自诊断提供了有效技术支撑。
Keyword小波包;信息熵;布谷鸟搜索;BP神经网络;故障诊断