Science Belongs to All Mankind

JOURNALS-DETAIL

基于机器学习的无线网络故障预测与诊断

Author:

刘亚菲,杨淋舒

Vol. 2, Issue 3, Pages: 17-19(2025)

Doi:

https://doi.org/10.62639/sspis05.20250203

ISSN:

3006-0737

EISSN:

3006-4309

Views:

57

Downloads:

1

Abstract References Project Publication Info Metrics
Abstract

随着无线网络在现代社会中的广泛普及,其复杂性和动态性不断提升,导致故障问题变得愈发多样且难以诊断。传统的监测与故障定位方法在应对日益庞大的数据量和复杂的网络环境时表现出明显的局限性,尤其是在实时性和准确性方面。为此,为了提升无线网络运行的稳定性和故障管理的智能化水平,本文以机器学习为核心技术,从数据预处理、特征选择与融合、模型优化等方面探讨故障预测与诊断的实现路径。通过引入深度学习技术,进一步增强模型对复杂非线性关系的捕捉能力,为无线网络的高效运行和故障管理提供了理论支持和实践指导,具有显著的现实意义。

Keyword

机器学习;无线网络故障;预测;诊断

International Scientific Studies Press Limited

International Scientific Studies Press Limited is a company boasting rich international communication resources and formidable editorial, translation, and publishing capabilities. Our primary focus revolves around the publication of academic journals. Our establishment's mission is to provide a premier publishing platfor...
FLAT C,23/F,LUCHY PLAZA,315-321 LOCKHART ROAD,WANCHAI,HONG KONG (00852) 65557188
Copyright © 2025 International Scientific Studies Press Limited