References
[1] Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany: Springer International Publishing, 234-241, 2015. https://doi.org/10.1007/978-3-319-24574-4_28.
[2] Vaswani A, Shazeer N, Parmar N, et al: Attention is all you need. Adv Neural Inf Process Syst 30:5998-6008, 2017. https://doi.org/10.48550/arXiv.1706.03762.
[3] Chen J, Lu Y, Yu Q, et al: TransUNet: Rethinking the U-Net architecture design for medical image segmentation through the lens of transformers. Medical Image Analysis, 97, 103280, 2024. https://doi.org/10.1016/j.media.2024.103280.
[4] Zhang Y, Liu H, Hu Q: TransFuse: Fusing Transformers and CNNs for medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021, Strasbourg, France: Springer International Publishing, 14-24, 2021. https://doi.org/10.1007/978-3-030-87193-2_2 .
[5] Liu Y, Xiao T, Gong M, et al: Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, January 18, 2024. https://doi.org/10.48550/arXiv.2401.10166.
[6] Ruan J, Xiang S: VM-UNet: Vision mamba UNet for medical image segmentation. arXiv preprint arXiv:2402.02491, February 5, 2024. https://doi.org/10.48550/arXiv.2402.02491.
[7] Si Y, Xu H, Zhu X, et al. SCSA: Exploring the synergistic effects between spatial and channel attention. arXiv preprint arXiv:2407.05128, 2024. https://doi.org/10.48550/arXiv.2407.05128.
[8] Zhou Z, Rahman Siddiquee MM, Tajbakhsh N, et al: UNet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain: Springer International Publishing, 3-11, 2018. https://doi.org/10.1007/978-3-030-00889-5_1.
[9] Cao, H. et al. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds) Computer Vision – ECCV 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, vol 13803. Springer, Cham. https://doi.org/10.1007/978-3-031-25066-8_9.
[10] Gu, Albert, Karan Goel, and Christopher Ré. "Efficiently modeling long sequences with structured state spaces." arXiv preprint arXiv:2111.00396 (2021). https://doi.org/10.48550/arXiv.2111.00396.
[11] Ma, Jun, Feifei Li, and Bo Wang. "U-mamba: Enhancing long-range dependency for biomedical image segmentation." arXiv preprint arXiv:2401.04722 (2024). https://doi.org/10.48550/arXiv.2401.04722.
[12] Xing, Zhaohu, et al. "Segmamba: Long-range sequential modeling mamba for 3d medical image segmentation." International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-72111-3_54.
[13] Ruan J, Xiang S: VM-UNet: Vision mamba UNet for medical image segmentation. arXiv preprint arXiv:2402.02491, February 5, 2024. https://doi.org/10.48550/arXiv.2402.02491 .
[14] Liu Y, Xiao T, Gong M, et al: Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, January 18, 2024. https://doi.org/10.48550/arXiv.2401.10166.
[15] Si, Yunzhong, et al. "SCSA: Exploring the synergistic effects between spatial and channel attention." arXiv preprint arXiv:2407.05128 (2024). https://doi.org/10.48550/arXiv.2407.05128.
[16] Gao, Yunhe, et al. "A data-scalable transformer for medical image segmentation: architecture, model efficiency, and benchmark." arXiv preprint arXiv:2203.00131 (2022). https://doi.org/10.48550/arXiv.2203.00131.
[17] Ruan J, Xiao C, Tong H, et al: MALUNet: A multi-attention and light-weight UNet for skin lesion segmentation. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV: IEEE, 264-269, 2022. https://doi.org/10.1109/BIBM55620.2022.9995040.
[18] Wei J, Hu Y, Zhang R, et al: Shallow attention network for polyp segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021, Strasbourg, France: Springer International Publishing, 699-708, 2021. https://doi.org/10.1007/978-3-030-87193-2_66 .
[19] Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for volumetric medical image segmentation." 2016 fourth international conference on 3D vision (3DV). Ieee, 2016. https://doi.org/10.1109/3DV.2016.79.
[20] Alom, Md Zahangir, et al. "Recurrent residual U-Net for medical image segmentation." Journal of medical imaging 6.1 (2019): 014006-014006.
[21] Azad, Reza, et al. "Transnorm: Transformer provides a strong spatial normalization mechanism for a deep segmentation model." IEEE access 10 (2022): 108205-108215. https://doi.org/10.1109/ACCESS.2022.3211501.
[22] Liu Z, Lin Y, Cao Y, et al: Swin Transformer: Hierarchical vision Transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, Canada: IEEE, 10012-10022, 2021. https://doi.org/10.48550/arXiv.2103.14030 .
[23] Azad, Reza, et al. "Transdeeplab: Convolution-free transformer-based deeplab v3+ for medical image segmentation." International Workshop on PRedictive Intelligence In MEdicine. Cham: Springer Nature Switzerland, 2022. https://doi.org/10.1007/978-3-031-16919-9_9.
[24] Wang, Haonan, et al. "Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer." Proceedings of the AAAI conference on artificial intelligence. Vol. 36. No. 3. 2022. https://doi.org/10.1609/aaai.v36i3.20144.
[25] Wang, Hongyi, et al. "Mixed transformer u-net for medical image segmentation." ICASSP 2022-2022 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2022. https://doi.org/10.1109/ICASSP43922.2022.9746172.